
Practical experience in the numerical dangers of heterogeneous
computing.

by L.S. Blackford, A. Cleary, A. Petitet, R.C. Whaley, J. Demmel, I. Dhillon, H. Ren, K.
Stanley, J. Dongarra and S. Hammarling

Programmers of computer software for distributed-memory parallel computers have to be careful
when transporting such programs into a heterogeneous computing environment because of
reliability issues. Problems can range from erroneous results which are not obvious to deadlock.
A number of problems were observed during the development of the ScalaPACK and the NAG
Numerical PVM Library. Solutions to problems related to floating-point machine parameters and
global values were used including a controlling procedure for solving problems with algorithmic
integrity.

© COPYRIGHT 1997 Association for Computing
Machinery Inc.

1. INTRODUCTION

There are special challenges associated with writing
reliable numerical software on networks containing
heterogeneous processors - that is, processors which may
do floating-point arithmetic differently. This includes not
just machines with completely different floating-point
formats and semantics, such as Cray vector computers
running Cray arithmetic versus workstations running IEEE
standard floating-point arithmetic, but even supposedly
identical machines running with different compilers, or
even just different compiler options or runtime
environments.

The basic problem occurs when making data-dependent
branches on different processors. The flow of an algorithm
is usually data dependent, so slight variations in the data
may lead to different processors executing completely
different sections of code.

This article represents (1) the experience of the
ScaLAPACK and NAG teams in developing numerical
software for distributed-memory message-passing
systems and (2) the awareness that the software being
developed may not be as robust on heterogeneous
systems as on homogeneous systems. We briefly describe
the work of these teams in Section 2, and Section 3
defines our use of the terms homogeneous and
heterogeneous computing and discusses the
considerations leading to the definitions.

In Sections 4, 5, and 8 we look at three areas that require
attention in developing software for heterogeneous
networks: machine parameters, where we discuss what
the values of machine parameters, such as machine
precision should be; checking global arguments and
communicating floating-point values; and algorithmic
integrity - that is, how can we ensure that algorithms
perform correctly in a heterogeneous setting. The

particular case of communicating floating-point values on
IEEE machines is briefly discussed in Section 6. Some
additional considerations arising from what we regard as
poor arithmetic, ranging from lack of full IEEE arithmetic
support to unnecessary overflow in complex arithmetic, are
discussed in Section 7.

This report is an updated version of Demmel et al. [1996],
which takes into account problems encountered during the
preparation of Version 1.2 of ScaLAPACK [Choi et al.
1995].

2. MOTIVATION AND BACKGROUND

The challenges of heterogeneous computing discussed in
this article came to light during the development of
ScaLAPACK and the NAG Numerical PVM Library
[McDonald 1995].

ScaLAPACK is a library of high-performance linear algebra
routines for distributed-memory MIMD machines. It is a
continuation of the LAPACK project, which has designed
and produced an efficient linear algebra library for
workstations, vector supercomputers, and shared-memory
parallel computers [Anderson et al. 1995]. Both libraries
contain routines for the solution of systems of linear
equations, linear least-squares problems, and eigenvalue
problems. The goals of the LAPACK project, which
continue into the ScaLAPACK project, include efficiency so
that the computationally intensive routines execute as fast
as possible; reliability, including the return of condition
estimates and error bounds; portability across machines;
flexibility so that users may construct new routines from
well-designed components; and ease of use. Toward this
last goal the ScaLAPACK software has been designed to
look as much like the LAPACK software as possible.
ScaLAPACK is naturally also concerned with scalability as
the problem size and number of processors grow.

Many of these goals have been attained by developing
and promoting standards, especially specifications for
basic computational and communication routines. Thus

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
LAPACK relies on the BLAS [Dongarra et al. 1988a;
1988b; 1990a; 1990b; Lawson et al. 1979], particularly the
Level 2 and 3 BLAS for computational efficiency, and
ScaLAPACK relies upon the BLACS [Dongarra and
Whaley 1995] for efficiency of communication and uses a
set of parallel BLAS, the PBLAS [Choi et al. 1995], which
themselves call the BLAS and the BLACS. LAPACK and
ScaLAPACK will run on any machines for which the BLAS
and the BLACS are available. A PVM [Geist et al. 1994]
version of the BLACS has been available for some time,
and the portability of the BLACS has recently been further
increased by the development of a version that uses MPI
[Snir et al. 1996].

As the BLACS are perhaps not so widely known as the
BLAS and LAPACK, we now give a brief description. The
BLACS, which stands for Basic Linear Algebra
Communication Subprograms, form a message-passing
library, specifically designed for dense linear algebra, in
which the computational model consists of a one- or
two-dimensional grid of processes, where each process
stores matrices and vectors. The BLACS include
synchronous send and receive routines to send a matrix or
submatrix from one process to another, to broadcast
submatrices to many processes, or to compute global
reductions such as sums, maxima, and minima. There are
also routines to set up, change, or query the process grid.
The BLACS permit a process to be a member of more
than one, possibly overlapping, grids, each one labeled by
a context. Some message-passing systems also include
the idea of a context; in MPI it is termed a communicator.
See Dongarra and Whaley [1995] and Snir et al. [1996] for
further details.

The NAG Numerical PVM Library is a library of numerical
routines, also for distributed-memory MIMD machines, that
contains routines for dense and sparse linear algebra,
including ScaLAPACK routines, quadrature, optimization,
random-number generation, and various utility routines for
operations such as data distribution and error handling.
This library owes much to the ScaLAPACK development,
uses essentially the same model for distributed-memory
computing as ScaLAPACK, and was developed with the
same goals in mind [Hammarling 1994]. Since the
development of an MPI version, the NAG Library is now
known generically as the NAG Parallel Library.

Both ScaLAPACK and the NAG Numerical PVM Library
use the BLACS computational model and utilize the
BLACS context. In addition they both use an SPMD
programming model.

ScaLAPACK and the NAG Numerical PVM Library were
developed with heterogeneous environments in mind, as

well as standard homogeneous machines. But during
development it was realized that we could not guarantee
the safe behavior of all our routines in a heterogeneous
environment, and so for the time being, both libraries are
only fully supported on homogeneous machines.
ScaLAPACK, though, is tested on networks of IEEE
machines and is believed to work correctly in such
environments, and it is intended to be able to fully support
other heterogeneous environments in the near future. Any
known heterogeneous failures are documented in the file
errata.scalapack on Netlib.(1) It is intended that the NAG
Parallel Libraries should also support heterogeneous
environments in the future.

In this report we concentrate primarily on the ScaLAPACK
experience.

3. HOMOGENEOUS AND HETEROGENEOUS
COMPUTING

The definition of a heterogeneous computing environment
depends to some extent on the application. Here we
attempt a definition that is relevant to numerical software.
The three main issues determining the classification are
the hardware, the communication layer, and the software
(operating system, compiler, compiler options). Any
differences in these areas can potentially affect the
behavior of the application. Specifically, the following
conditions must be satisfied before a system can be
considered homogeneous:

(1) The hardware of each processor guarantees the same
storage representation and the same results for operations
on floating-point numbers.

(2) If a floating-point number is communicated between
processors, the communication layer guarantees the exact
transmittal of the floating-point value.

(3) The software (operating system, compiler, compiler
options) on each processor also guarantees the same
storage representation and the same results for operations
on floating-point numbers.

We regard a homogeneous machine as one which
satisfies condition (1); a homogeneous network as a
collection of homogeneous machines which additionally
satisfies condition (2); and finally, a homogeneous
computing environment as a homogeneous network which
satisfies condition (3). We can then make the obvious
definition that a heterogeneous computing environment is
one that is not homogeneous. The requirements for a
homogeneous computing environment are quite stringent
and are frequently not met in networks of workstations, or

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
PCs, even when each computer in the network is the same
model.

Some areas of distinction are quite obvious, such as a
difference in the architecture of two machines or the type
of communication layer implemented. (Communication
issues are discussed in more detail in Section 6.) Some
hardware and software issues, however, can potentially
affect the behavior of the application and be difficult to
diagnose. For example, the determination of machine
parameters such as machine precision, overflow, and
underflow, the implementation of complex arithmetic such
as complex division, or the handling of NaNs and
subnormal numbers could all differ. Some of these
subtleties may only become apparent when the arithmetic
operations occur on the edge of the range of representable
numbers. Section 4 discusses arithmetic issues in more
detail.

The difficult question that remains unanswered for
developers of library software is "when can we guarantee
that heterogeneous computing is safe?" There is also the
question of just how much additional programming effort
we should expend to gain the additional robustness.
Unless we can incorporate a reliable test for homogeneity,
we are also in danger of imposing a considerable
additional performance penalty on homogeneous systems
in order to perform safely on heterogeneous systems.

To illustrate the potential problems consider the iterative
solution of a system of linear equations where the stopping
criterion depends upon the value of some function, f, of the
relative machine precision,(2) [Epsilon]. The test for
convergence might well include a test of the form

if [[[[e.sub.r]]].sub.2][[[[x.sub.r]]].sub.2] [less than]
f([Epsilon]) the converged

In a heterogeneous setting the value of f may be different
on different processors, and [e.sub.r] and [x.sub.r] may
depend upon data of different accuracies; and thus one or
more processes may converge in a fewer number of
iterations. Indeed the stopping criterion used by the most
accurate processor may never be satisfied if it depends on
data computed less accurately by other processors. If the
code contains communication between processors within
an iteration, it may not complete if one processor
converges before the others. In a heterogeneous
environment, the only way to guarantee termination is to
have one processor make the convergence decision and
broadcast that decision.

This is a strategy we shall see again in later sections.

4. MACHINE PARAMETERS

Machine parameters such as the relative machine
precision, the underflow and overflow thresholds, and the
smallest value which can be safely reciprocated (which in
LAPACK is called sfmin) are frequently used in numerical
linear algebra computations, as well as in many other
numerical computations. Without due care, variations in
these values between processors can cause problems,
such as those mentioned above.

Many such problems can be eliminated by using the
largest machine precision among all participating
processors. In LAPACK, routine DLAMCH returns the
(double-precision) machine precision (as well as other
machine parameters). In ScaLAPACK this is replaced by
PDLAMCH which returns the largest value over all the
processors, replacing the uniprocessor value returned by
DLAMCH. Similarly, one should use the smallest overflow
threshold and largest underflow threshold over the
processors being used. The ScaLAPACK routine
PDLAMCH runs the LAPACK routine DLAMCH on each
process in the context and communicates the relevant
maximum or minimum value. We refer to these machine
parameters as the multiprocessor machine parameters.
DLAMCH can also return the base, b, which nowadays is
invariably b = 2, but what we would do for PDLAMCH if we
ever had a mixture of binary and decimal machines in a
network we leave as an open question!

Note that since PDLAMCH requires communication to
each process in the context, it suffers from the weakness
that it cannot be called by a subset of the processes (as
might for example happen when a conditional statement
such as an IF statement is being executed), because
processes will be waiting for a communication which will
never take place. There are many examples in
ScaLAPACK codes, however, where only a subset of
nodes (for instance one column or one row of the process
grid) is performing a given computation, such as pivot
selection. ScaLAPACK has to avoid calling PDLAMCH
from such computations. Section 8 contains a specific
example of this case.

For this reason, it is expected that the next release of the
BLACS will support caching based on the BLACS context.
We will then be able to perform the communication just
once for each context and cache the values on the
context. Subsequent PDLAMCH calls within the context
will then access strictly local data, so will be more efficient,
and thus may be safely called from code performing
computations on grid subsets.

5. GLOBAL ARGUMENTS AND FLOATING-POINT

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 3

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
VALUES

In a homogeneous environment we think of a global
variable as having the same value on each process, but of
course this may not be true of floating-point values in a
heterogeneous environment.

Where possible, the high-level routines in the ScaLAPACK
and NAG Libraries check arguments supplied by users for
their validity in order to aid users and provide as much
reliability as possible. In particular, global arguments are
checked. When these global arguments are floating-point
values they may of course, for the reasons previously
discussed, have different values on different processors.

This raises the question of how, and even whether, such
arguments should be checked, and what action should be
taken when a failure occurs. If we compare the values,
they may not be the same on each process, so we need to
allow a tolerance based upon the multiprocessor machine
precision. Alternatively, we can check a global argument
on just one process and then, if the value is valid,
broadcast that value to all the other processes. Of course
this alternative approach has extra overhead, but it may be
the most numerically sound solution, since the library
routine has algorithmic control and puts slightly less
burden on the user.

Similar issues occur whenever we communicate a
floating-point value from one processor to another. Unless
we have special knowledge (and one such case will be
discussed in the next section) we should not assume that
the target processor will have exactly the same value or
representation as the sending processor, and we must
write the code accordingly.

6. COMMUNICATING FLOATING-POINT VALUES ON
IEEE MACHINES

The IEEE standard for binary floating-point arithmetic
[IEEE 1985] specifies how machines conforming to the
standard should represent floating-point values. We refer
to machines conforming to this standard as IEEE
machines.(3) Thus, when we communicate floating-point
numbers between IEEE machines we might hope that
each processor has the same value. This is a reasonable
hope and will often be realized.

For example, XDR (External Data Representation [SunSoft
1993, Appendix Al) uses the IEEE representation for
floating-point numbers, so a message-passing system that
uses XDR will communicate floating-point numbers without
change.(4) PVM is an example of a system that uses XDR.
MPI suggests the use of XDR, but does not mandate its

use [Snir et al. 1996, Sect. 2.3.3]. Unless we have
additional information about the implementation, we
cannot assume that floating-point numbers will be
communicated without change on IEEE machines when
using MPI.

Note that there is also an IEEE standard concerned with
standardizing data formats to aid data conversion between
processors [IEEE 1994].

7. CONSIDERATIONS DUE TO POOR ARITHMETIC

As we expand the ScaLAPACK test suite to encompass
more rigorous testing, particularly for floating-point values
close to the edge of representable numbers (as is present
in the LAPACK test suite), we are reminded of additional
dangers which must be avoided in floating-point arithmetic.
For example, it is a sad reflection that some compilers still
do not implement complex arithmetic carefully. In
particular, unscaled complex division still occurs on certain
architectures, leading to unnecessary overflow.(5) To
handle this difficulty ScaLAPACK, as in LAPACK, restricts
the range of representable numbers by a call to routine
PDLABAD (in double precision), the equivalent of the
LAPACK routine DLABAD, which replaces the smallest
and largest representable numbers by their respective
square roots in order to give protection from underflow or
overflow on machines that do not take the care to scale on
operations such as complex division. PDLABAD calls
DLABAD locally on each process and then communicates
the minimum and maximum value respectively. Arguably
we should have separate routines for real and complex
arithmetic, but since we hope that the need for DLABAD
will eventually disappear we have so far resisted taking
that step.

This is particularly irritating if one machine in a network is
causing us to impose unnecessary restrictions on all the
machines in the network, but without such a restriction,
catastrophic results can occur during computations near
the overflow or underflow thresholds.

Another problem that we have encountered during testing
is in the way that subnormal (denormalized) numbers are
handled on certain (near) IEEE architectures. By default,
some architectures flush subnormal numbers to zero.(6)
Thus, if the computation involves numbers near underflow,
and a subnormal number is communicated to such a
machine, the computational results may be invalid, and the
subsequent behavior unpredictable. Often such machines
have a compiler switch to allow the handling of subnormal
numbers, but it can be nonobvious; and we cannot
guarantee that users will use such a switch.

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 4

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
This behavior occurred during the heterogeneous testing
of the linear least-squares routines when the input test
matrix was a full-rank matrix scaled near underflow. During
the course of the computation a subnormal number was
communicated; this value was unrecognized on receipt,
and a floating-point exception was flagged. The execution
on the processor was killed, subsequently causing the
execution on the other processors to hang. As we expand
the test suite, we expect to discover such behavior in other
parts of ScaLAPACK, since we do not believe that there
was anything special about the least-squares routines.

A solution would be to replace subnormal numbers either
with zero, or with the nearest normal number, but we are
somewhat reluctant to implement this solution, since
ScaLAPACK does not seem to be the correct software
level at which to address the problem. A simple example
program to illustrate this problem is given in the Appendix.

8. ALGORITHMIC INTEGRITY

The suggestions we have made so far certainly do not
solve all of the problems. We are still left with major
concerns for problems associated with varying
floating-point representations and arithmetic operations
between different processors, different compilers, and
different compiler options. We have given one example at
the end of Section 3, and we now illustrate the difficulties
with three further examples from ScaLAPACK, the second
example giving rather more severe difficulties than the first
and third.

Many routines in LAPACK and hence in ScaLAPACK
scale vectors and matrices. The scaling is done to
equilibrate or balance a matrix in order to improve its
condition, to avoid harmful under flow, or overflow, or even
to improve accuracy by scaling away from subnormal
numbers. When scaling occurs we naturally have to
ensure that all processes containing elements of the vector
or matrix to be scaled take part in the scaling. Consider the
case of a four-element vector

[x.sup.T] = ([x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4])

distributed over two processors, with the following test for
scaling:

if [[[x]].sub.2] [less than] [Delta] then x [left arrow] [Alpha]x

As illustrated in Figure 1, if we let each processor make
the decision independently then we risk the danger of
one-processor scaling, while the other does not.

If this situation occurred the computation would now

proceed with the meaningless vector

[x.sup.T] = ([Alpha][x.sub.1] [Alpha][x.sub.2] [x.sub.3]
[x.sub.4]).

One way to ensure correct computation is to put one
process in control of whether or not scaling should take
place, and for that process to communicate the decision to
the other processes. Having a controlling process is a
common way to solve such problems on heterogeneous
networks.

An example of a routine that scales internally to improve
accuracy is the LAPACK routine DLARFG, which
computes an elementary reflector (Householder
transformation matrix) H such that

Hx = [Beta][e.sub.1],

where [Beta] is a scalar; x is an n-element vector; and
[e.sub.1] is the first column of the unit matrix. H is
represented in the form

H = I - [Tau]v[v.sup.T],

where [Tau] is a scalar, and v is an n-element vector.
Since H is orthogonal we see that

[absolute value of [Beta]] = [[[x]].sub.2].

If [absolute value of [Beta]] is very small (subnormal or
close to being subnormal), DLARFG temporarily scales x
and recomputes [[[x]].sub.2]. This computation is at the
heart of the LAPACK QR and other factorizations (for
example, see Golub and Van Loan [1989]).

In the case of the equivalent ScaLAPACK routine
PDLARFG, x will typically be distributed over several
processors, each of which participates in the computation
of [[[x]].sub.2] and, if necessary, scales its portion of the
vector x and recomputes [[[x]].sub.2]. From the previous
discussion we can see that we clearly need to take care
here, or else, in close cases, some processors may
attempt to recompute [[[x]].sub.2], while others do not,
leading to completely erroneous results, or even deadlock.
This care will be exercised when ScaLAPACK is able to
call the version of the BLACS that support caching, as
discussed at the end of Section 4. The hope is that this will
occur for Version 2.0 of ScaLAPACK. We could of course
solve the problem now by using the idea mentioned above
of a controlling process, but this would involve a rather
heavy communication burden, and we prefer to wait until
we can use the more efficient solution based upon the
BLACS. Although failure is very unlikely, and indeed we

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 5

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
have not yet been able to find an example that fails without
artificially altering the PDLARFG code, the possibility of
failure exists.

While we could not find an example that failed without
altering the code, we were able to experimentally simulate
such a heterogeneous failure, using the current version of
ScaLAPACK,(7) by performing the QR factorization of a
6-by-6 matrix A such that

[Mathematical Expression Omitted].

We took [Delta] = sfmin, which is [approximately equal to]
[10.sup.-38] on an IEEE machine. The value of sfmin is
used in PDLARFG to determine whether or not to scale
the vector, and we artificially adjusted the value so that
sfmin[left arrow][2.sup.*]sfmin on one of the processes
involved in the scaling decision. As expected, the
execution of the factorization hung.

As for the second, and somewhat harder, problem
consider the method of bisection for finding the
eigenvalues of symmetric matrices performed by the
ScaLAPACK routine PDSYEVX. In this algorithm, the real
axis is broken into disjoint intervals to be searched by
different processes for the eigenvalues contained in each
interval. Disjoint intervals are searched in parallel. The
algorithm depends on a function, say count (a,b), that
counts the number of eigenvalues in the half-open interval
[a, b). Using count, intervals can be subdivided into
smaller intervals containing eigenvalues until the intervals
are narrow enough to declare the eigenvalues they contain
as being found. The problem here is that two processors
may not agree on the boundary between their intervals.
This could result in multiple copies of eigenvalues if
intervals overlap, or missing eigenvalues if there are gaps
between intervals. Furthermore, the count function may
count differently on different processors, so an interval [a,
b) may be considered to contain one eigenvalue by
processor A, but zero eigenvalues by processor B, which
has been given the interval by processor A during load
balancing. This can happen even if processors A and B
are identical in hardware terms, but if the compilers on
each one generate slightly different code sequences for
count. In this example we have not yet decided what to do
about all these problems, so we currently only guarantee
correctness of PDSYEVX for networks of processors with
identical floating-point formats (but slightly different
floating-point operations turn out to be acceptable). See
Demmel et al. [1995] for further discussion. Assigning the
work by index rather than by range and sorting all the
eigenvalues at the end may give the desired result with
modest overhead. Of course, if floating-point formats differ
across processors, sorting is a problem in itself. This

requires further investigation.

The symmetric eigensolvers, PDSYEVX and PZHEEVX,
may also have trouble on heterogeneous networks when a
subset of eigenvalues is chosen by value (i.e., RANGE=
’V’) and when one of the limits of that range (VL or VU) is
within a couple of units in the last place (ULPs) of an
actual eigenvalue. The two processors may then disagree
on the number of eigenvalues specified by the range VL
and VU, and the code breaks with each process returning
INFO [not equal to] 0 (which is the LAPACK and
ScaLAPACK failure indicator). This situation can happen
when running the test code and should again be corrected
in the next release. In every case that we have seen, the
answer is correct despite the spurious error message. This
is not a problem on homogeneous systems.

The third example is based upon the idea that some
algorithms can perform redundant work in order to gain
parallelism. While redundant work on different processors
is intended to yield identical results, this may not be the
case in a heterogeneous environment. For instance, one
approach for parallelizing the symmetric eigenproblem is
to perform the tridiagonal QR algorithm to reduce the
tridiagonal matrix to diagonal form redundantly on all
processors, save the plane rotations, and then accumulate
the resulting Givens rotations in parallel into the relevant
columns of the unit matrix. This results in O([n.sup.2])
redundant work, but O([n.sup.3]) parallel work, and
requires no communication. Since the QR algorithm is not
in general forward stable, slight differences in the
underlying arithmetic can lead to completely different
rotations and hence the danger of obtaining quite
inconsistent eigenvectors. This problem can be solved by
having a controlling process that runs the QR algorithm
and then broadcasts the plane rotations to the other
processes, but the communication cost is substantial:
O([n.sup.2]).

9. CLOSING REMARKS

We have tried to illustrate some of the potential difficulties
concerned with floating-point computations on
heterogeneous networks. Some of these difficulties are
straightforward to address, while others require
considerably more thought. All of them require some
additional level of defensive programming to ensure the
usual standards of reliability that users have come to
expect from packages such as LAPACK and the NAG
Libraries.

We have suggested reasonably straightforward solutions
to the problems associated with floating-point machine
parameters and global values and have suggested the use

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 6

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
of a controlling process to solve some of the difficulties of
algorithmic integrity. This can probably be used to solve
most of these problems, but in some cases at the expense
of considerable additional overhead, usually in terms of
additional communication, which is also imposed on a
homogeneous network unless we have separate code for
the homogeneous case. Unless we can devise a
satisfactory test for homogeneity and hence have separate
paths within the code, separate code would defeat the aim
of portability.

A topic that we have not discussed is that of the additional
testing necessary to give confidence in heterogeneous
environments. The testing strategies that are needed are
similar to those already employed in reputable software
packages such as LAPACK, but it may be very hard to
produce actual test examples that would detect incorrect
implementations of the algorithms because, as we have
seen, the failures are likely to be very sensitive to the
computing environment and may be nondeterministic.

The LAPACK and ScaLAPACK software sets are available
from Netlib,(8) as is the documentation and the LAPACK
Working Notes. A number of the other references in the
bibliography can also be found via Netlib, particularly
Anderson et al. [1995], Geist et al. [1994], and Snir et al.
[1996].(9)

APPENDIX

The following code is intended to illustrate possible failure
when a processor receives a subnormal number, but may
not itself (by default) handle such numbers.

The example constructs a one-by-two grid with process
identifiers (0,0) and (0,1) and assumes that process (0,0)
is running on a processor that generates IEEE subnormal
numbers. For (possible) failure to occur process (0,1)
should be running on a processor that does not support
subnormal numbers.

We have observed failure when (0,0) is running on a Sun4
(which handles subnormal numbers correctly) and when
process (0,1) is running on a DEC Alpha under Unix,
which by default flushes subnormal numbers to zero. (The
nondefault compiler flag -fpe1 will trap to software
emulation.)

The program utilizes the BLACS. See Dongarra and
Whaley [1995] for further details on the BLACS.

[PROGRAM LISTING OMITTED]

ACKNOWLEDGMENTS

We wish to thank all of our ScaLAPACK and NAG
colleagues for a number of useful discussions on
heterogeneous computing and their valuable input to this
article. We also thank an anonymous referee for helpful
comments, which have improved the presentation of the
article.

1 http://www.netlib.org/scalapack/index.html

2 A common definition of the relative machine precision, or
unit roundoff, is the smallest positive floating-point value,
[Epsilon], such that fl(1 + [Epsilon]) [greater than] 1, where
fl(x) is the floating-point representation of x. See Higham
[1996, Ch. 2] for further details.

3 It should be noted that there is also a radix-independent
standard [IEEE 1987].

4 It is not clear whether or not this can be assumed for
subnormal (denormalized) numbers.

5 At the time of testing ScaLAPACK version 1.2, the
HP9000 exhibited this behavior

6 The DEC Alpha, at the time of writing, is an example.

7 Version 1.2.

8 http://www.netlib.org/

9 Anderson et al. [1995] is accessible on Netlib via URL
http://www.netlib.org/lapack; Geist et al. [1994] via
http://www.netlib.org/pvm3/book/pvm-book.html; and Snir
et al. [1996] via http://www.netlib.org/mpi/contrib.

REFERENCES

ANDERSON, E., BAI, Z., BISCHOF, C. H., DEMMEL, J.,
DONGARRA, J. J., DU CROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S.,
AND SORENSEN, D.C. 1995. LAPACK User’s Guide. 2nd
ed. SIAM, Minneapolis, Minn.

CHOI, J., DEMMEL, J., DHILLON, I., DONGARRA, J. J.,
OSTROUCHOV, S., PETITET, A., STANLEY, K.,
WALKER, D. W., AND WHALEY, R.C. 1995. ScaLAPACK:
A portable linear algebra library for distributed memory
computers - Design issues and performance. In Applied
Parallel Computing (Lyngby, Denmark). Springer-Verlag,
New York, 95-106.

CHOI, J., DONGARRA, J. J., OSTROUCHOV, S.,
PETITET, A., WALKER, D. W., AND WHALEY, R. C.
1995. A proposal for a set of parallel basic linear algebra

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 7

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Practical experience in the numerical dangers of heterogeneous
computing.
subprograms. In Applied Parallel Computing (Lyngby,
Denmark). Springer-Verlag, New York, 107-114.

DEMMEL, J., DHILLON, I., AND REN, H. 1995. On the
correctness of parallel bisection in floating point. ETNA 3,
116-149.

DEMMEL, J., DONGARRA, J. J., HAMMARLING, S.,
OSTROUCHOV, S., AND STANLEY, K. 1996. The
dangers of heterogeneous network computing:
Heterogeneous networks considered harmful. In
Heterogeneous Computing. IEEE Computer Society
Press, Los Alamitos, Calif., 64-71.

DONGARRA, J. J. AND WHALEY, R.C. 1995. A User’s
Guide to the BLACS v1.0. University of Tennessee,
Knoxville, Tenn.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S.,
AND DUFF, I.S. 1990a. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16, 1
(Mar.), 1-17.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S.,
AND DUFF, I.S. 1990b. Algorithm 679: A set of level 3
basic linear algebra subprograms: Model implementation
and subprograms. ACM Trans. Math. Softw. 16, 1 (Mar.),
18-28.

DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND
HANSON, R.J. 1988a. An extended set of FORTRAN
basic linear algebra subprograms. ACM Trans. Math.
Softw. 14, 1 (Mar.), 1-17.

DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND
HANSON, R.J. 1988b. Algorithm 656: An extended set of
basic linear algebra subprograms: Model implementation
and test programs. ACM Trans. Math. Softw. 14, I (Mar.),
18-32.

GEIST, A., BEGUELIN, A., DONGARRA, J., JIANG, W.,
MANCHEK, R., AND SUNDERAM, V. 1994. PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel computing. MIT Press, Cambridge,
Mass.

GOLUB, G. AND VAN LOAN, C.F. 1989. Matrix
Computations. 2nd ed. The Johns Hopkins University
Press, Baltimore, Md.

HAMMARLING, S. 1994. Parallel library work at NAG. In
Environments and Tools for Parallel Scientific Computing
(Townsend, Tenn.). SIAM, Minneapolis, Minn., 172-182.

HIGHAM, N.J. 1996. Accuracy and Stability of Numerical
Algorithms. SIAM, Minneapolis, Minn.

IEEE. 1985. ANSI/IEEE standard for binary floating point
arithmetic: Standard 754-1985. IEEE Press, Piscataway,
N.J.

IEEE. 1987. ANSI/IEEE standard for radix independent
floating point arithmetic: Standard 854-1987. IEEE Press,
Piscataway, N.J.

IEEE. 1994. IEEE standard for shared-data formats
optimized for scalable coherent interface (SCI) processors:
Standard 1596.5-1993. IEEE Press, Piscataway, N.J.

LAWSON, C. L., HANSON, R. J., KINCAID, D. R., AND
KROGH, F.T. 1979. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Softw. 5, 3, 308-323.

McDONALD, K. 1995. The NAG numerical PVM library. In
Applied Parallel Computing (Lyngby, Denmark).
Springer-Verlag, New York, 419-428.

SNIR, M., OTTO, S. W., HUSS-LEDERMAN, S.,
WALKER, D. W., AND DONGARRA, J.J. 1996. MPI: The
Complete Reference. MIT Press, Cambridge, Mass.

SUNSOFT. 1993. The XDR Protocol Specification.
Appendix A of Network Interfaces Programmer’s Guide.
SunSoft, Mountain View, Calif.

ACM Transactions on Mathematical Softwa... June 1997 v23 n2 p133(15) Page 8

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

