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Programmers of computer software for distributed-memory parallel computers have to be careful 
when transporting such programs into a heterogeneous computing environment because of 
reliability issues. Problems can range from erroneous results which are not obvious to deadlock. 
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1. INTRODUCTION

There are special challenges associated with writing 
reliable numerical software on networks containing 
heterogeneous processors - that is, processors which may 
do floating-point arithmetic differently. This includes not 
just machines with completely different floating-point 
formats and semantics, such as Cray vector computers 
running Cray arithmetic versus workstations running IEEE 
standard floating-point arithmetic, but even supposedly 
identical machines running with different compilers, or 
even just different compiler options or runtime 
environments.

The basic problem occurs when making data-dependent 
branches on different processors. The flow of an algorithm 
is usually data dependent, so slight variations in the data 
may lead to different processors executing completely 
different sections of code.

This article represents (1) the experience of the 
ScaLAPACK and NAG teams in developing numerical 
software for distributed-memory message-passing 
systems and (2) the awareness that the software being 
developed may not be as robust on heterogeneous 
systems as on homogeneous systems. We briefly describe 
the work of these teams in Section 2, and Section 3 
defines our use of the terms homogeneous and 
heterogeneous computing and discusses the 
considerations leading to the definitions.

In Sections 4, 5, and 8 we look at three areas that require 
attention in developing software for heterogeneous 
networks: machine parameters, where we discuss what 
the values of machine parameters, such as machine 
precision should be; checking global arguments and 
communicating floating-point values; and algorithmic 
integrity - that is, how can we ensure that algorithms 
perform correctly in a heterogeneous setting. The 

particular case of communicating floating-point values on 
IEEE machines is briefly discussed in Section 6. Some 
additional considerations arising from what we regard as 
poor arithmetic, ranging from lack of full IEEE arithmetic 
support to unnecessary overflow in complex arithmetic, are 
discussed in Section 7.

This report is an updated version of Demmel et al. [1996], 
which takes into account problems encountered during the 
preparation of Version 1.2 of ScaLAPACK [Choi et al. 
1995].

2. MOTIVATION AND BACKGROUND

The challenges of heterogeneous computing discussed in 
this article came to light during the development of 
ScaLAPACK and the NAG Numerical PVM Library 
[McDonald 1995].

ScaLAPACK is a library of high-performance linear algebra 
routines for distributed-memory MIMD machines. It is a 
continuation of the LAPACK project, which has designed 
and produced an efficient linear algebra library for 
workstations, vector supercomputers, and shared-memory 
parallel computers [Anderson et al. 1995]. Both libraries 
contain routines for the solution of systems of linear 
equations, linear least-squares problems, and eigenvalue 
problems. The goals of the LAPACK project, which 
continue into the ScaLAPACK project, include efficiency so 
that the computationally intensive routines execute as fast 
as possible; reliability, including the return of condition 
estimates and error bounds; portability across machines; 
flexibility so that users may construct new routines from 
well-designed components; and ease of use. Toward this 
last goal the ScaLAPACK software has been designed to 
look as much like the LAPACK software as possible. 
ScaLAPACK is naturally also concerned with scalability as 
the problem size and number of processors grow.

Many of these goals have been attained by developing 
and promoting standards, especially specifications for 
basic computational and communication routines. Thus 
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LAPACK relies on the BLAS [Dongarra et al. 1988a; 
1988b; 1990a; 1990b; Lawson et al. 1979], particularly the 
Level 2 and 3 BLAS for computational efficiency, and 
ScaLAPACK relies upon the BLACS [Dongarra and 
Whaley 1995] for efficiency of communication and uses a 
set of parallel BLAS, the PBLAS [Choi et al. 1995], which 
themselves call the BLAS and the BLACS. LAPACK and 
ScaLAPACK will run on any machines for which the BLAS 
and the BLACS are available. A PVM [Geist et al. 1994] 
version of the BLACS has been available for some time, 
and the portability of the BLACS has recently been further 
increased by the development of a version that uses MPI 
[Snir et al. 1996].

As the BLACS are perhaps not so widely known as the 
BLAS and LAPACK, we now give a brief description. The 
BLACS, which stands for Basic Linear Algebra 
Communication Subprograms, form a message-passing 
library, specifically designed for dense linear algebra, in 
which the computational model consists of a one- or 
two-dimensional grid of processes, where each process 
stores matrices and vectors. The BLACS include 
synchronous send and receive routines to send a matrix or 
submatrix from one process to another, to broadcast 
submatrices to many processes, or to compute global 
reductions such as sums, maxima, and minima. There are 
also routines to set up, change, or query the process grid. 
The BLACS permit a process to be a member of more 
than one, possibly overlapping, grids, each one labeled by 
a context. Some message-passing systems also include 
the idea of a context; in MPI it is termed a communicator. 
See Dongarra and Whaley [1995] and Snir et al. [1996] for 
further details.

The NAG Numerical PVM Library is a library of numerical 
routines, also for distributed-memory MIMD machines, that 
contains routines for dense and sparse linear algebra, 
including ScaLAPACK routines, quadrature, optimization, 
random-number generation, and various utility routines for 
operations such as data distribution and error handling. 
This library owes much to the ScaLAPACK development, 
uses essentially the same model for distributed-memory 
computing as ScaLAPACK, and was developed with the 
same goals in mind [Hammarling 1994]. Since the 
development of an MPI version, the NAG Library is now 
known generically as the NAG Parallel Library.

Both ScaLAPACK and the NAG Numerical PVM Library 
use the BLACS computational model and utilize the 
BLACS context. In addition they both use an SPMD 
programming model.

ScaLAPACK and the NAG Numerical PVM Library were 
developed with heterogeneous environments in mind, as 

well as standard homogeneous machines. But during 
development it was realized that we could not guarantee 
the safe behavior of all our routines in a heterogeneous 
environment, and so for the time being, both libraries are 
only fully supported on homogeneous machines. 
ScaLAPACK, though, is tested on networks of IEEE 
machines and is believed to work correctly in such 
environments, and it is intended to be able to fully support 
other heterogeneous environments in the near future. Any 
known heterogeneous failures are documented in the file 
errata.scalapack on Netlib.(1) It is intended that the NAG 
Parallel Libraries should also support heterogeneous 
environments in the future.

In this report we concentrate primarily on the ScaLAPACK 
experience.

3. HOMOGENEOUS AND HETEROGENEOUS 
COMPUTING

The definition of a heterogeneous computing environment 
depends to some extent on the application. Here we 
attempt a definition that is relevant to numerical software. 
The three main issues determining the classification are 
the hardware, the communication layer, and the software 
(operating system, compiler, compiler options). Any 
differences in these areas can potentially affect the 
behavior of the application. Specifically, the following 
conditions must be satisfied before a system can be 
considered homogeneous:

(1) The hardware of each processor guarantees the same 
storage representation and the same results for operations 
on floating-point numbers.

(2) If a floating-point number is communicated between 
processors, the communication layer guarantees the exact 
transmittal of the floating-point value.

(3) The software (operating system, compiler, compiler 
options) on each processor also guarantees the same 
storage representation and the same results for operations 
on floating-point numbers.

We regard a homogeneous machine as one which 
satisfies condition (1); a homogeneous network as a 
collection of homogeneous machines which additionally 
satisfies condition (2); and finally, a homogeneous 
computing environment as a homogeneous network which 
satisfies condition (3). We can then make the obvious 
definition that a heterogeneous computing environment is 
one that is not homogeneous. The requirements for a 
homogeneous computing environment are quite stringent 
and are frequently not met in networks of workstations, or 
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PCs, even when each computer in the network is the same 
model.

Some areas of distinction are quite obvious, such as a 
difference in the architecture of two machines or the type 
of communication layer implemented. (Communication 
issues are discussed in more detail in Section 6.) Some 
hardware and software issues, however, can potentially 
affect the behavior of the application and be difficult to 
diagnose. For example, the determination of machine 
parameters such as machine precision, overflow, and 
underflow, the implementation of complex arithmetic such 
as complex division, or the handling of NaNs and 
subnormal numbers could all differ. Some of these 
subtleties may only become apparent when the arithmetic 
operations occur on the edge of the range of representable 
numbers. Section 4 discusses arithmetic issues in more 
detail.

The difficult question that remains unanswered for 
developers of library software is "when can we guarantee 
that heterogeneous computing is safe?" There is also the 
question of just how much additional programming effort 
we should expend to gain the additional robustness. 
Unless we can incorporate a reliable test for homogeneity, 
we are also in danger of imposing a considerable 
additional performance penalty on homogeneous systems 
in order to perform safely on heterogeneous systems.

To illustrate the potential problems consider the iterative 
solution of a system of linear equations where the stopping 
criterion depends upon the value of some function, f, of the 
relative machine precision,(2) [Epsilon]. The test for 
convergence might well include a test of the form

if [[[[e.sub.r]]].sub.2][[[[x.sub.r]]].sub.2] [less than] 
f([Epsilon]) the converged

In a heterogeneous setting the value of f may be different 
on different processors, and [e.sub.r] and [x.sub.r] may 
depend upon data of different accuracies; and thus one or 
more processes may converge in a fewer number of 
iterations. Indeed the stopping criterion used by the most 
accurate processor may never be satisfied if it depends on 
data computed less accurately by other processors. If the 
code contains communication between processors within 
an iteration, it may not complete if one processor 
converges before the others. In a heterogeneous 
environment, the only way to guarantee termination is to 
have one processor make the convergence decision and 
broadcast that decision.

This is a strategy we shall see again in later sections.

4. MACHINE PARAMETERS

Machine parameters such as the relative machine 
precision, the underflow and overflow thresholds, and the 
smallest value which can be safely reciprocated (which in 
LAPACK is called sfmin) are frequently used in numerical 
linear algebra computations, as well as in many other 
numerical computations. Without due care, variations in 
these values between processors can cause problems, 
such as those mentioned above.

Many such problems can be eliminated by using the 
largest machine precision among all participating 
processors. In LAPACK, routine DLAMCH returns the 
(double-precision) machine precision (as well as other 
machine parameters). In ScaLAPACK this is replaced by 
PDLAMCH which returns the largest value over all the 
processors, replacing the uniprocessor value returned by 
DLAMCH. Similarly, one should use the smallest overflow 
threshold and largest underflow threshold over the 
processors being used. The ScaLAPACK routine 
PDLAMCH runs the LAPACK routine DLAMCH on each 
process in the context and communicates the relevant 
maximum or minimum value. We refer to these machine 
parameters as the multiprocessor machine parameters. 
DLAMCH can also return the base, b, which nowadays is 
invariably b = 2, but what we would do for PDLAMCH if we 
ever had a mixture of binary and decimal machines in a 
network we leave as an open question!

Note that since PDLAMCH requires communication to 
each process in the context, it suffers from the weakness 
that it cannot be called by a subset of the processes (as 
might for example happen when a conditional statement 
such as an IF statement is being executed), because 
processes will be waiting for a communication which will 
never take place. There are many examples in 
ScaLAPACK codes, however, where only a subset of 
nodes (for instance one column or one row of the process 
grid) is performing a given computation, such as pivot 
selection. ScaLAPACK has to avoid calling PDLAMCH 
from such computations. Section 8 contains a specific 
example of this case.

For this reason, it is expected that the next release of the 
BLACS will support caching based on the BLACS context. 
We will then be able to perform the communication just 
once for each context and cache the values on the 
context. Subsequent PDLAMCH calls within the context 
will then access strictly local data, so will be more efficient, 
and thus may be safely called from code performing 
computations on grid subsets.

5. GLOBAL ARGUMENTS AND FLOATING-POINT 
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VALUES

In a homogeneous environment we think of a global 
variable as having the same value on each process, but of 
course this may not be true of floating-point values in a 
heterogeneous environment.

Where possible, the high-level routines in the ScaLAPACK 
and NAG Libraries check arguments supplied by users for 
their validity in order to aid users and provide as much 
reliability as possible. In particular, global arguments are 
checked. When these global arguments are floating-point 
values they may of course, for the reasons previously 
discussed, have different values on different processors.

This raises the question of how, and even whether, such 
arguments should be checked, and what action should be 
taken when a failure occurs. If we compare the values, 
they may not be the same on each process, so we need to 
allow a tolerance based upon the multiprocessor machine 
precision. Alternatively, we can check a global argument 
on just one process and then, if the value is valid, 
broadcast that value to all the other processes. Of course 
this alternative approach has extra overhead, but it may be 
the most numerically sound solution, since the library 
routine has algorithmic control and puts slightly less 
burden on the user.

Similar issues occur whenever we communicate a 
floating-point value from one processor to another. Unless 
we have special knowledge (and one such case will be 
discussed in the next section) we should not assume that 
the target processor will have exactly the same value or 
representation as the sending processor, and we must 
write the code accordingly.

6. COMMUNICATING FLOATING-POINT VALUES ON 
IEEE MACHINES

The IEEE standard for binary floating-point arithmetic 
[IEEE 1985] specifies how machines conforming to the 
standard should represent floating-point values. We refer 
to machines conforming to this standard as IEEE 
machines.(3) Thus, when we communicate floating-point 
numbers between IEEE machines we might hope that 
each processor has the same value. This is a reasonable 
hope and will often be realized.

For example, XDR (External Data Representation [SunSoft 
1993, Appendix Al) uses the IEEE representation for 
floating-point numbers, so a message-passing system that 
uses XDR will communicate floating-point numbers without 
change.(4) PVM is an example of a system that uses XDR. 
MPI suggests the use of XDR, but does not mandate its 

use [Snir et al. 1996, Sect. 2.3.3]. Unless we have 
additional information about the implementation, we 
cannot assume that floating-point numbers will be 
communicated without change on IEEE machines when 
using MPI.

Note that there is also an IEEE standard concerned with 
standardizing data formats to aid data conversion between 
processors [IEEE 1994].

7. CONSIDERATIONS DUE TO POOR ARITHMETIC

As we expand the ScaLAPACK test suite to encompass 
more rigorous testing, particularly for floating-point values 
close to the edge of representable numbers (as is present 
in the LAPACK test suite), we are reminded of additional 
dangers which must be avoided in floating-point arithmetic. 
For example, it is a sad reflection that some compilers still 
do not implement complex arithmetic carefully. In 
particular, unscaled complex division still occurs on certain 
architectures, leading to unnecessary overflow.(5) To 
handle this difficulty ScaLAPACK, as in LAPACK, restricts 
the range of representable numbers by a call to routine 
PDLABAD (in double precision), the equivalent of the 
LAPACK routine DLABAD, which replaces the smallest 
and largest representable numbers by their respective 
square roots in order to give protection from underflow or 
overflow on machines that do not take the care to scale on 
operations such as complex division. PDLABAD calls 
DLABAD locally on each process and then communicates 
the minimum and maximum value respectively. Arguably 
we should have separate routines for real and complex 
arithmetic, but since we hope that the need for DLABAD 
will eventually disappear we have so far resisted taking 
that step.

This is particularly irritating if one machine in a network is 
causing us to impose unnecessary restrictions on all the 
machines in the network, but without such a restriction, 
catastrophic results can occur during computations near 
the overflow or underflow thresholds.

Another problem that we have encountered during testing 
is in the way that subnormal (denormalized) numbers are 
handled on certain (near) IEEE architectures. By default, 
some architectures flush subnormal numbers to zero.(6) 
Thus, if the computation involves numbers near underflow, 
and a subnormal number is communicated to such a 
machine, the computational results may be invalid, and the 
subsequent behavior unpredictable. Often such machines 
have a compiler switch to allow the handling of subnormal 
numbers, but it can be nonobvious; and we cannot 
guarantee that users will use such a switch.
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This behavior occurred during the heterogeneous testing 
of the linear least-squares routines when the input test 
matrix was a full-rank matrix scaled near underflow. During 
the course of the computation a subnormal number was 
communicated; this value was unrecognized on receipt, 
and a floating-point exception was flagged. The execution 
on the processor was killed, subsequently causing the 
execution on the other processors to hang. As we expand 
the test suite, we expect to discover such behavior in other 
parts of ScaLAPACK, since we do not believe that there 
was anything special about the least-squares routines.

A solution would be to replace subnormal numbers either 
with zero, or with the nearest normal number, but we are 
somewhat reluctant to implement this solution, since 
ScaLAPACK does not seem to be the correct software 
level at which to address the problem. A simple example 
program to illustrate this problem is given in the Appendix.

8. ALGORITHMIC INTEGRITY

The suggestions we have made so far certainly do not 
solve all of the problems. We are still left with major 
concerns for problems associated with varying 
floating-point representations and arithmetic operations 
between different processors, different compilers, and 
different compiler options. We have given one example at 
the end of Section 3, and we now illustrate the difficulties 
with three further examples from ScaLAPACK, the second 
example giving rather more severe difficulties than the first 
and third.

Many routines in LAPACK and hence in ScaLAPACK 
scale vectors and matrices. The scaling is done to 
equilibrate or balance a matrix in order to improve its 
condition, to avoid harmful under flow, or overflow, or even 
to improve accuracy by scaling away from subnormal 
numbers. When scaling occurs we naturally have to 
ensure that all processes containing elements of the vector 
or matrix to be scaled take part in the scaling. Consider the 
case of a four-element vector

[x.sup.T] = ([x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4])

distributed over two processors, with the following test for 
scaling:

if [[[x]].sub.2] [less than] [Delta] then x [left arrow] [Alpha]x

As illustrated in Figure 1, if we let each processor make 
the decision independently then we risk the danger of 
one-processor scaling, while the other does not.

If this situation occurred the computation would now 

proceed with the meaningless vector

[x.sup.T] = ([Alpha][x.sub.1] [Alpha][x.sub.2] [x.sub.3] 
[x.sub.4]).

One way to ensure correct computation is to put one 
process in control of whether or not scaling should take 
place, and for that process to communicate the decision to 
the other processes. Having a controlling process is a 
common way to solve such problems on heterogeneous 
networks.

An example of a routine that scales internally to improve 
accuracy is the LAPACK routine DLARFG, which 
computes an elementary reflector (Householder 
transformation matrix) H such that

Hx = [Beta][e.sub.1],

where [Beta] is a scalar; x is an n-element vector; and 
[e.sub.1] is the first column of the unit matrix. H is 
represented in the form

H = I - [Tau]v[v.sup.T],

where [Tau] is a scalar, and v is an n-element vector. 
Since H is orthogonal we see that

[absolute value of [Beta]] = [[[x]].sub.2].

If [absolute value of [Beta]] is very small (subnormal or 
close to being subnormal), DLARFG temporarily scales x 
and recomputes [[[x]].sub.2]. This computation is at the 
heart of the LAPACK QR and other factorizations (for 
example, see Golub and Van Loan [1989]).

In the case of the equivalent ScaLAPACK routine 
PDLARFG, x will typically be distributed over several 
processors, each of which participates in the computation 
of [[[x]].sub.2] and, if necessary, scales its portion of the 
vector x and recomputes [[[x]].sub.2]. From the previous 
discussion we can see that we clearly need to take care 
here, or else, in close cases, some processors may 
attempt to recompute [[[x]].sub.2], while others do not, 
leading to completely erroneous results, or even deadlock. 
This care will be exercised when ScaLAPACK is able to 
call the version of the BLACS that support caching, as 
discussed at the end of Section 4. The hope is that this will 
occur for Version 2.0 of ScaLAPACK. We could of course 
solve the problem now by using the idea mentioned above 
of a controlling process, but this would involve a rather 
heavy communication burden, and we prefer to wait until 
we can use the more efficient solution based upon the 
BLACS. Although failure is very unlikely, and indeed we 
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have not yet been able to find an example that fails without 
artificially altering the PDLARFG code, the possibility of 
failure exists.

While we could not find an example that failed without 
altering the code, we were able to experimentally simulate 
such a heterogeneous failure, using the current version of 
ScaLAPACK,(7) by performing the QR factorization of a 
6-by-6 matrix A such that

[Mathematical Expression Omitted].

We took [Delta] = sfmin, which is [approximately equal to] 
[10.sup.-38] on an IEEE machine. The value of sfmin is 
used in PDLARFG to determine whether or not to scale 
the vector, and we artificially adjusted the value so that 
sfmin[left arrow][2.sup.*]sfmin on one of the processes 
involved in the scaling decision. As expected, the 
execution of the factorization hung.

As for the second, and somewhat harder, problem 
consider the method of bisection for finding the 
eigenvalues of symmetric matrices performed by the 
ScaLAPACK routine PDSYEVX. In this algorithm, the real 
axis is broken into disjoint intervals to be searched by 
different processes for the eigenvalues contained in each 
interval. Disjoint intervals are searched in parallel. The 
algorithm depends on a function, say count (a,b), that 
counts the number of eigenvalues in the half-open interval 
[a, b). Using count, intervals can be subdivided into 
smaller intervals containing eigenvalues until the intervals 
are narrow enough to declare the eigenvalues they contain 
as being found. The problem here is that two processors 
may not agree on the boundary between their intervals. 
This could result in multiple copies of eigenvalues if 
intervals overlap, or missing eigenvalues if there are gaps 
between intervals. Furthermore, the count function may 
count differently on different processors, so an interval [a, 
b) may be considered to contain one eigenvalue by 
processor A, but zero eigenvalues by processor B, which 
has been given the interval by processor A during load 
balancing. This can happen even if processors A and B 
are identical in hardware terms, but if the compilers on 
each one generate slightly different code sequences for 
count. In this example we have not yet decided what to do 
about all these problems, so we currently only guarantee 
correctness of PDSYEVX for networks of processors with 
identical floating-point formats (but slightly different 
floating-point operations turn out to be acceptable). See 
Demmel et al. [1995] for further discussion. Assigning the 
work by index rather than by range and sorting all the 
eigenvalues at the end may give the desired result with 
modest overhead. Of course, if floating-point formats differ 
across processors, sorting is a problem in itself. This 

requires further investigation.

The symmetric eigensolvers, PDSYEVX and PZHEEVX, 
may also have trouble on heterogeneous networks when a 
subset of eigenvalues is chosen by value (i.e., RANGE= 
’V’) and when one of the limits of that range (VL or VU) is 
within a couple of units in the last place (ULPs) of an 
actual eigenvalue. The two processors may then disagree 
on the number of eigenvalues specified by the range VL 
and VU, and the code breaks with each process returning 
INFO [not equal to] 0 (which is the LAPACK and 
ScaLAPACK failure indicator). This situation can happen 
when running the test code and should again be corrected 
in the next release. In every case that we have seen, the 
answer is correct despite the spurious error message. This 
is not a problem on homogeneous systems.

The third example is based upon the idea that some 
algorithms can perform redundant work in order to gain 
parallelism. While redundant work on different processors 
is intended to yield identical results, this may not be the 
case in a heterogeneous environment. For instance, one 
approach for parallelizing the symmetric eigenproblem is 
to perform the tridiagonal QR algorithm to reduce the 
tridiagonal matrix to diagonal form redundantly on all 
processors, save the plane rotations, and then accumulate 
the resulting Givens rotations in parallel into the relevant 
columns of the unit matrix. This results in O([n.sup.2]) 
redundant work, but O([n.sup.3]) parallel work, and 
requires no communication. Since the QR algorithm is not 
in general forward stable, slight differences in the 
underlying arithmetic can lead to completely different 
rotations and hence the danger of obtaining quite 
inconsistent eigenvectors. This problem can be solved by 
having a controlling process that runs the QR algorithm 
and then broadcasts the plane rotations to the other 
processes, but the communication cost is substantial: 
O([n.sup.2]).

9. CLOSING REMARKS

We have tried to illustrate some of the potential difficulties 
concerned with floating-point computations on 
heterogeneous networks. Some of these difficulties are 
straightforward to address, while others require 
considerably more thought. All of them require some 
additional level of defensive programming to ensure the 
usual standards of reliability that users have come to 
expect from packages such as LAPACK and the NAG 
Libraries.

We have suggested reasonably straightforward solutions 
to the problems associated with floating-point machine 
parameters and global values and have suggested the use 
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of a controlling process to solve some of the difficulties of 
algorithmic integrity. This can probably be used to solve 
most of these problems, but in some cases at the expense 
of considerable additional overhead, usually in terms of 
additional communication, which is also imposed on a 
homogeneous network unless we have separate code for 
the homogeneous case. Unless we can devise a 
satisfactory test for homogeneity and hence have separate 
paths within the code, separate code would defeat the aim 
of portability.

A topic that we have not discussed is that of the additional 
testing necessary to give confidence in heterogeneous 
environments. The testing strategies that are needed are 
similar to those already employed in reputable software 
packages such as LAPACK, but it may be very hard to 
produce actual test examples that would detect incorrect 
implementations of the algorithms because, as we have 
seen, the failures are likely to be very sensitive to the 
computing environment and may be nondeterministic.

The LAPACK and ScaLAPACK software sets are available 
from Netlib,(8) as is the documentation and the LAPACK 
Working Notes. A number of the other references in the 
bibliography can also be found via Netlib, particularly 
Anderson et al. [1995], Geist et al. [1994], and Snir et al. 
[1996].(9)

APPENDIX

The following code is intended to illustrate possible failure 
when a processor receives a subnormal number, but may 
not itself (by default) handle such numbers.

The example constructs a one-by-two grid with process 
identifiers (0,0) and (0,1) and assumes that process (0,0) 
is running on a processor that generates IEEE subnormal 
numbers. For (possible) failure to occur process (0,1) 
should be running on a processor that does not support 
subnormal numbers.

We have observed failure when (0,0) is running on a Sun4 
(which handles subnormal numbers correctly) and when 
process (0,1) is running on a DEC Alpha under Unix, 
which by default flushes subnormal numbers to zero. (The 
nondefault compiler flag -fpe1 will trap to software 
emulation.)

The program utilizes the BLACS. See Dongarra and 
Whaley [1995] for further details on the BLACS.

[PROGRAM LISTING OMITTED]
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1 http://www.netlib.org/scalapack/index.html

2 A common definition of the relative machine precision, or 
unit roundoff, is the smallest positive floating-point value, 
[Epsilon], such that fl(1 + [Epsilon]) [greater than] 1, where 
fl(x) is the floating-point representation of x. See Higham 
[1996, Ch. 2] for further details.

3 It should be noted that there is also a radix-independent 
standard [IEEE 1987].

4 It is not clear whether or not this can be assumed for 
subnormal (denormalized) numbers.

5 At the time of testing ScaLAPACK version 1.2, the 
HP9000 exhibited this behavior

6 The DEC Alpha, at the time of writing, is an example.

7 Version 1.2.

8 http://www.netlib.org/

9 Anderson et al. [1995] is accessible on Netlib via URL 
http://www.netlib.org/lapack; Geist et al. [1994] via 
http://www.netlib.org/pvm3/book/pvm-book.html; and Snir 
et al. [1996] via http://www.netlib.org/mpi/contrib.
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