
Lessons learned: building reusable OO frameworks for distributed software.
by Douglas C Schmidt and Mohamed E Fayad

Success in developing and deploying reusable object-oriented software components and
frameworks depends on many factors, many of which are not technical in nature, and can be
optimized through processes based on iteration and incremental growth. Being aware of the
benefits and limitations of standards, practices and available resources also helps the software
developer to be more effective. Cooperation between end-users and developers will further help
improve the quality of object-oriented frameworks and components and move these into the
computing mainstream.

© COPYRIGHT 1997 Association for Computing
Machinery Inc.

Developing complex distributed applications can be an
expensive and error-prone process. As a result,
contemporary organizations are increasingly faced with a
"distributed software crisis" - computing hardware and
networks get smaller, faster, and cheaper, yet distributed
software gets larger, slower, and more expensive to
develop and maintain. The challenges of building
distributed software stem from inherent and accidental
complexities [3] associated with distributed systems:

* Inherent complexity stems from the fundamental
challenges of developing distributed software. Chief
among these is detecting and recovering from network and
host failures, minimizing the impact of communication
latency, and determining an optimal partitioning of service
components and workload onto processing elements
throughout a network.

* Accidental complexity stems from limitations with tools
and techniques used to develop distributed software. A
common source of accidental complexity is the widespread
use of algorithmic decomposition [1] (also known as
functional design), which results in non-extensible and
non-reusable software designs and implementations.

The lack of extensibility and reuse is particularly
problematic for complex distributed software. Extensibility
is essential to ensure timely modification and
enhancement of services and features. Reuse is essential
to leverage the domain knowledge of expert developers to
avoid redeveloping and revalidating available common
solutions to recurring requirements and software
challenges. Object-oriented frameworks are promising
technologies for increasing the extensibility and reuse of
distributed software.

Over the past decade, we have worked with many
companies and agencies (including Motorola, U.S. Sprint,
Ericsson, Siemens, Bellcore, Kodak, McDonnell Douglas,
and the U.S. Naval Research Laboratory) building
reusable OO communication software frameworks and
applications. In these projects, we’ve applied a range of

OO middleware frameworks including OMG CORBA (an
emerging industry standard for distributed object
computing middleware) and the ACE framework (a widely
used C++ framework that implements many strategic and
tactical design patterns for concurrent communication
software). Some of the important lessons we’ve learned
from developing and deploying reusable OO
communication software components and frameworks in
practice are described here.

Successful reuse generally requires the presence of
certain key non-technical prerequisites. Many political,
economic, organizational, and psychological factors can
impede the successful reuse of distributed software. We
have found that reuse works best when (1) the
marketplace is competitive (time-to-market is crucial, so
leveraging existing software substantially reduces the
entire project’s development effort and cost), (2) the
application domain is non-trivial (repeatedly developing
complete solutions from scratch is too costly), and (3) the
corporate culture is supportive of an effective reuse
process (developers are rewarded for taking the time to
build robust, efficient, and reusable software components).

When these prerequisites do not exist, we have found that
developers often fall victim to the "not-invented-here"
syndrome and have a tendency to rebuild everything from
scratch. Unfortunately, this situation forces them to
rediscover and reinvent the core distributed software
concepts and components, which is time-consuming,
error-prone, and expensive.

Development processes that encourage iteration and
incremental growth are essential. Expanding on the
corporate culture theme, we have observed that it is
crucial for top-level software managers to openly support
the fact that good components, frameworks, and software
architectures take time to craft and hone. If this support
does not occur, we’ve found that many developers and
project managers will take the path of least resistance and
not risk their schedules and budgets by planning for reuse.
Therefore, for reuse to succeed at large, organizations
must have the collective vision and managerial resolve to
support the incremental evolution of reusable software.

Communications of the ACM Oct 1997 v40 n10 p85(3) Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Lessons learned: building reusable OO frameworks for distributed software.
In many domains, we’ve observed that an 80% solution
that can be evolved and optimized is preferable to trying to
achieve a 100% solution that is never completed. Fred
Brook’s observation "Plan to throw the first one away, you
will anyway" [3] applies as much today as it did 20 years
ago.

Integrate framework infrastructure developers with
application developers. A time-honored way of producing
reusable components is to generalize from the bottom up
from working systems and applications. Most of the useful
components and frameworks we’ve encountered emerge
from solving real problems in domains like
telecommunications, medical imaging, avionics, and
transaction processing. Therefore, we advise resisting the
temptation to create "component teams" that build
reusable frameworks in complete isolation from application
teams. We have learned the hard way that without intimate
feedback from application developers, the software
artifacts produced by a component team won’t solve real
problems and will not be widely reused.

Industry "standards" are not panaceas. Expecting
emerging industry middleware standards (like CORBA,
DCOM, or Java RMI) to eliminate distributed software
complexity today is very risky. For instance, although
lower-level middleware implementations (such as ORBs
and message-oriented middleware) are reaching maturity,
the semantics of higher-level middleware services (such
as the CORBA’s Common Object Services and Common
Facilities) are still vague, under-specific, and
non-interoperable. However, despite the fact that
higher-level middleware frameworks aren’t quite suited to
meet demanding real-time performance and reliability
requirements in certain domains, we expect that over the
next two years we’ll see the emergence of middleware
products that support such features [5].

Beware of simple(-minded) solutions to complex software
problems. While developing high-quality reusable software
is hard enough, developing high-quality extensible and
reusable distributed middleware framework software is
even harder. Not surprisingly, many companies attempting
to build reusable middleware frameworks fail - often with
enormous losses of money, time, and market share. We’ve
noticed that the fear of failure often encourages companies
to pin their hopes on silver bullets intended to slay the
demons of distributed software complexity by using CASE
tools or point-and-click wizards.

Unfortunately, simple solutions to complex problems that
sound too good to be true usually are. For example,
translating code entirely from high-level specifications or
using trendy OO design methodologies and programming
languages is no guarantee of success. In our experience,

there’s simply no substitute for skilled software developers,
which leads to the following "lesson learned."

Respect and reward quality developers. Ultimately,
reusable components are only as good as the people who
build and use them. In our experience, cultivating
high-quality software developers is time consuming and
expensive. Ironically, many companies treat their
developers as interchangeable, "unskilled labor" who can
be replaced easily. We expect that over time, companies
who respect and reward their high-quality software
developers will increasingly outperform those who don’t.

Recognize and understand:

* The interoperability and the unawareness of existing
repositories and applications.

* Most of the existing ORBs do not support (or provide
poor support) for dynamic invocation.

* CORBA does not comply well with type-oriented
paradigms.

Beware of the integration problems. A navigator and
configurator must exist to ease integration problems.

Be wary of the existence of rich set of tools, environments,
and large investments in legacy systems. Please say no to
reverse engineering, reengineering, or forward engineering
and use wrapper or object shell [4] approaches instead.

Developing reusable OO middleware components and
frameworks is not a silver bullet. Software is inherently
abstract, which makes it hard to engineer its quality and to
manage its production. The good news, however, is that
OO component and framework technologies are becoming
mainstream. Developers and users are increasingly
adopting and succeeding with object-oriented design and
programming.

On the other hand, the bad news is that (1) existing OO
components and frameworks are largely focused on only a
few areas (GUIs), (2) the skills required to successfully
produce distributed middleware remain a "black art," and
(3) existing industry standards still lack the semantics,
features, and interoperability to be truly effective
throughout the distributed software domain. Too often,
vendors use industry standards to sell proprietary software
under the guise of open systems. Therefore, it is essential
for end users to work with standards organizations and
middleware vendors to ensure the emerging specifications
support true interoperability and define features that meet
distributed software requirements.

Communications of the ACM Oct 1997 v40 n10 p85(3) Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Lessons learned: building reusable OO frameworks for distributed software.
To support the standardization effort, it is crucial for us to
capture and document the patterns that underlie the
successful distributed software components and
frameworks that do exist. Likewise, we need to reify these
patterns to guide the creation of standard frameworks and
components for the distributed domain. We are optimistic
that the next generation of OO frameworks and
components will be a substantial improvement over those
we’ve worked with in the past.

REFERENCES

1. Booch, G. Object-Oriented Analysis and Design.
Benjamin-Cummings, 1993.

2. Brooks, F.P. No silver bullet: Essence and accidents of
software engineering. IEEE Comput. 20, 4 (Apr. 1987),
10-19.

3. Brooks, F.P. The Mythical Man-Month. Addison-Wesley,
Reading, Mass., 1975.

4. Fayad, M.E., Tsai, W.T and Fulghum, M.L. Transition to
object-oriented software development. Commun. ACM 39,
2 (Feb. 1996).

5. Gokhale, A., Schmidt, D.C., Harrison, T., and Parulkar,
G. Towards real-time CORBA. IEEE Communications
Magazine 14, 2 (Feb. 1997).

MOHAMED E. FAYAD (fayad@cs.unr.edu) is an associate
professor in the College of Engineering at the University of
Nevada-Reno.

DOUGLAS C. SCHMIDT (schmidt@cs.wustl.edu) is an
assistant professor in the Department of Computer
Science at Washington University in St. Louis, Missouri.

Communications of the ACM Oct 1997 v40 n10 p85(3) Page 3

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

